
 1

A Reciprocal Framework for Spatial
K-Anonymity

Gabriel Ghinita, Keliang Zhao, Dimitris Papadias, and Panos Kalnis

Abstract—Spatial K-anonymity (SKA) exploits the concept of K-anonymity in order to protect the identity of users from
location-based attacks. The main idea of SKA is to replace the exact location of a user U with an anonymizing spatial
region (ASR) that contains at least K-1 other users, so that an attacker can pinpoint U with probability at most 1/K. Simply
generating an ASR that includes K users does not guarantee SKA. Previous work defined the reciprocity property as a
sufficient condition for SKA. However, the only existing reciprocal method, Hilbert Cloak, relies on a specialized data
structure. In contrast, we propose a general framework for implementing reciprocal algorithms using any existing spatial
index on the user locations. We discuss ASR construction methods with different tradeoffs on effectiveness (i.e., ASR size)
and efficiency (i.e., construction cost). Then, we present case studies of applying our framework on top of two popular
spatial indices (namely, R*-trees and Quad-trees). Finally we consider the case where the attacker knows the query
patterns of each user. The experimental results verify that our methods outperform Hilbert Cloak. Moreover, since we
employ general-purpose spatial indices, the proposed system is not limited to anonymization, but supports conventional
spatial queries.

Index Terms—Location-based Services, Anonymity, Privacy, Spatial Databases

—————————— � ——————————

1 INTRODUCTION

HE embedding of positioning capabilities (e.g.,
GPS) in mobile devices has triggered several excit-
ing applications. However, at the same time, it has

raised serious concerns about the risks of revealing sen-
sitive information in location based services (LBS) [BS03,
BWJ05]. Consider a user U that wants to issue a query
about the nearest nightclub to an untrustworthy LBS
through a non-secure channel, without being identified.
U establishes a secure connection (e.g., SSL) with an
anonymizer, which is a trusted server (services for ano-
nymous web surfing are common). The anonymizer
removes the user ID from the query and forwards it to
the LBS. Nevertheless, the LBS requires the coordinates
of U in order to process the query. If the LBS is mali-
cious (e.g., it collects and sells personal data and habits
for unsolicited advertisements), it can relate these coor-
dinates to U through a variety of techniques. For in-
stance, U may issue the query from a residence, in
which case the coordinates can be converted to a street
address and linked to U using an on-line white pages
service. Furthermore, since the communication channel
between the LBS and the anonymizer is not secure, an
eavesdropper who physically observes U can easily

associate the user with the query. In general, removing
the ID is not enough for hiding the identity. Moreover,
simply perturbing the exact location with an area
around U may not suffice. If, for instance, U is in a
sparse rural region, even a relatively large area may not
enclose other users.

Several systems aim at solving these problems using
the concept of spatial K-anonymity (SKA). SKA requires
that an attacker can pinpoint the user that issues a
query with probability not exceeding 1/K, even if, in
the worst case, all user locations are known to the at-
tacker. Assume that the anonymizer receives a location
based query from U. Then, it could pick K-1 random
users and forward K independent queries (including
the real one) to the LBS. This simple method achieves
SKA because the query could originate from any client
with equal probability 1/K. However, it has several
problems: (i) depending on the value of K, a potentially
large number of locations are transmitted to the LBS,
(ii) the LBS has to process K independent queries and
send back all their results, and (iii) the anonymizer re-
veals the exact locations of K users, which is undesira-
ble in many applications.

To overcome these problems, most existing systems
use the framework of Fig. 1.1. (i) A user/client U sends
its query and anonymity requirement K to the anonymiz-
er, which maintains the current locations of numerous
clients. (ii) The anonymizer removes the user ID and
selects an anonymizing set (AS) that contains U and at
least K-1 other clients in its vicinity. The K-anonymizing

T

———————————————
• G. Ghinita and Panos Kalnis are with the Department of Computer

Science, National University of Singapore, Email: {ghinitag, kalnis}
@comp.nus.edu.sg

• K.Zhao and D. Papadias are with the Department of Computer
Science and Engineering, Hong Kong University of Science and
Technology, Email: cs_zkx@stu.ust.hk, dimitris@cse.ust.hk

2

spatial region (K-ASR or ASR) is an area that spatially
encloses AS. (iii) The anonymizer forwards the ASR to
the LBS that stores the spatial data (e.g., nightclub data-
set). (iv) The LBS processes the query and returns to the
anonymizer a set of candidate results. (v) The anony-
mizer removes the false hits and forwards the actual
result to U.

As an example, consider that U3 in Fig. 1.2a issues a
location-based nearest neighbor (NN) query with K=3.
The anonymizer computes AS={U3,U4,U5}, generates the
corresponding ASR (shaded rectangle), and forwards it
to the LBS. Because the LBS only obtains the ASR, but
not the query point, it retrieves the NN for every possi-
ble location in the ASR. This candidate set is returned
to the anonymizer that performs the filtering and for-
wards the actual NN to U3. The process of replacing a
specific location with an ASR is called spatial cloaking. A
cloaking algorithm is secure, if it satisfies SKA. In our
example, given the ASR, an attacker should not be able
to infer U3 as the query origin with probability that ex-
ceeds 1/3. Although the ASR can have arbitrary shape,
it is common to use regular shapes, e.g., minimum
bounding rectangles (MBRs), because they incur small
network overhead (when transmitted to the LBS) and
facilitate query processing. Furthermore, the ASR is
independent of the query type; for instance, the ASR of
Fig. 1.2a may have been created for a NN, or range
query.

Nevertheless, simply generating an ASR that in-
cludes K clients is not sufficient for SKA. Consider an
algorithm, called Center Cloak in the sequel, that given a
query from U, finds its K-1 closest users and sets the
ASR as the MBR that encloses them. In fact, a similar
technique is proposed in [CML06] for anonymization in
peer-to-peer systems (i.e., the K-ASR contains the query
issuing peer and its K-1 nearest nodes). Given a query
from U3, U4, or U5, Center Cloak would generate the ASR
of Fig. 1.2a. On the other hand, if the query originates
from U6, the ASR is the shaded rectangle in Fig. 1.2b.
The second ASR violates SKA because an attacker can
be sure that the query is issued by U6, as the same ASR
could not be generated for any other client. Specifically,
any AS involving 3 users and created for U4 or U5,
would contain U3 (as in Fig. 1.2a), but not U6. As we

discuss in Section 2.2, most existing cloaking algorithms
have similar problems1.

To eliminate these problems, Kalnis et al. [KGMP07]
introduced reciprocity, a sufficient property for SKA.
Reciprocity requires that a set of users are always
grouped together for a given K, or equivalently, each
user in an AS lies in the ASRs of all other clients in the
AS. Formally:

Definition [Reciprocity2]. Consider a user U issuing a
query with anonymity degree K, anonymizing set
AS, and anonymizing spatial region ASR. AS satis-
fies reciprocity if (i) it contains U and at least K-1 ad-
ditional users, and (ii) every user in AS also gene-
rates the same anonymizing set AS for the given K.

If every AS satisfies reciprocity, an ASR may have
originated from every user in the corresponding AS
with equal probability 1/|AS|, where |AS| is the car-
dinality of AS. Because |AS|≥K, the probability of
identifying the query issuer does not exceed 1/K. For
instance, in Fig. 1.2a AS = {U3,U4,U5} is reciprocal be-
cause it is generated (by Center Cloak) for each query
with K=3 issued by U3, U4, or U5. Therefore, the three
users are indistinguishable to an attacker. In contrast,
AS = {U4,U5,U6} in Fig. 1.2b is not reciprocal because if
the query were issued by U4 or U5, the AS would be
{U3,U4,U5} as in Fig. 1.2a (in other words, U6 is not in the
3-ASR of U4 and U5). A cloaking algorithm is reciprocal,
if every AS (i.e., for each possible user and K) satisfies
reciprocity. It can be proved that reciprocal algorithms
are secure.

In addition to being secure, spatial cloaking should
be efficient and effective. Efficiency means that the cost
of generating the ASR (at the anonymizer) should be
minimized for better scalability and faster service. Ef-
fectiveness refers to the area of the ASR, which should
also be minimized. Specifically, a large ASR incurs high
processing overhead (at the LBS) and network cost (for
transferring numerous candidate results from the LBS
to the anonymizer). In real-world services, users may

1 Additionally, Center Cloak compromises SKA in another way: often,

the querying user U is closest to the ASR center. Thus, a simple "cen-
ter-of-ASR" attack would correctly guess U with probability that far
exceeds 1/K, especially for large values of K.

2 Reciprocity has been independently formulated as the k-sharing
property in [CM07].

LBS location

actual results

actual position, query, K
secure connection Anonymizer

data objects

user U

ASR, query
candidate results

o n s e c u r e c o n n e c t i o n

n

Fig. 1.1 Framework for spatial anonymization

x

y

1 2 3 4 5

1

2

3

4

U1

6U2

U3
U4

U5

U

3-ASR for
U3 ,U4 , or U5

x

y

1 2 3 4 5

1

2

3

4

U1

6U2

U3
U4

U5

U

3-ASR for U6

(a) 3-ASR for U3, U4, or U5 (b) 3-ASR for U6
Fig. 1.2 Examples of spatial cloaking

3

be charged depending on their anonymity require-
ments and the overhead that these requirements im-
pose on the system. Reciprocity has a negative impact
on effectiveness because, in general, it leads to relative-
ly large ASRs. For instance, if U4, U5 and U6 are
grouped in the same AS as shown in Fig. 1.2b for a
query of U6, then this AS should also be used for que-
ries (with the same K) issued by U4 and U5. On the other
hand, if reciprocity were not required, the anonymizer
could use the smaller ASR of Fig. 1.2a.

Our work is motivated by the fact that the only exist-
ing reciprocal technique, Hilbert Cloak [KGMP07], re-
quires a specialized annotated B+-tree, which is used
exclusively for spatial cloaking. In contrast, we envision
a comprehensive anonymization service which, in addi-
tion to spatial cloaking, is capable of answering added-
value queries, such as “find buddies in my vicinity”. To
support efficiently a variety of spatial queries, the ano-
nymizer must index the moving users by a general
purpose spatial index, such as an R*-tree or a Quad-
tree. Consequently, spatial cloaking should also be im-
plemented on top of any existing spatial index. Guided
by these requirements, our contributions are:
(i) We propose a general reciprocal framework for ob-

taining reciprocal (i.e., secure) cloaking algorithms
based on an underlying spatial index. We develop
an algorithm that, for a user U indexed by any tree
structure, identifies the partition sub-tree which can
be used independently to anonymize U, without
violating reciprocity for any user.

(ii) We present two novel reciprocal partitioning algo-
rithms, called GH and AR, which are based on our
framework. Given a user U and the corresponding
partition sub-tree, GH and AR generate the ASR for
U. GH is best in terms of efficiency, whereas AR
maximizes effectiveness.

(iii) We introduce and incorporate in our framework,
the frequency-aware reciprocity property, which
guarantees SKA even if the query frequency varies
among users and is known to the attacker (e.g., a
taxi driver asks more location-based queries than a
casual commuter). Previous work assumed that all
users have the same query frequency.

(iv) We present two implementations of the reciprocal
framework, based on the R*-tree [BKSS90] and on
the Quad-tree [S90], and evaluate the tradeoffs be-
tween efficiency and effectiveness. We show that,
due to the superior clustering of the spatial indices,
the proposed framework outperforms Hilbert Cloak.

The rest of the paper is organized as follows: Section 2
overviews the related work. Section 3 states our as-
sumptions, and proposes the reciprocal framework. Sec-
tion 4 presents the partitioning methods. Section 5 ad-
dresses the case of variable query frequencies. Section 6
contains the experimental evaluation and Section 7 con-
cludes with directions for future work.

2 BACKGROUND
This section surveys relational and spatial K-anonymity
methods and discusses the relationship among them.

2.1 Relational K-anonymity (RKA)
Relational K-anonymity has received considerable atten-
tion due to the need of several organizations to publish
data (often called microdata) without revealing the iden-
tity of individual records. Consider a hospital authority
that wishes to release information about its patients for
medical research. Even if the identifying attributes (e.g.,
name) are removed, an attacker may be able to identify
specific patients using combinations of other attributes
(e.g., zipcode, gender, birth date), called quasi-identifiers
(QI). A table is K-anonymized if each record is indistin-
guishable from at least K-1 other records with respect to
the QI set [S01]. Records with identical QI values form
an anonymized group. The most common form of ano-
nymization is generalization, which involves replacing
specific QI attribute values with more general ones.

Generalization can be applied to categorical and
numerical attributes. In the first case, there is a prede-
fined hierarchy of possible generalizations (e.g., a city
name is replaced by the state or country). For numerical
attributes, the existence of a hierarchy is not necessary,
but values may be substituted by arbitrary ranges,
whose extent depends on their density. Fig. 2.1a illu-
strates a generalization example for a table T involving
two numeric QI and a sensitive attribute SA (to be dis-
cussed shortly). AT is a 3-anonymized version of T. AT
contains groups, each with at least 3 tuples that have
identical QI values. Fig. 2.1b contains a visualization of
AT, where each group is represented by a 2-D range.

Several generalization algorithms have been pro-
posed. Optimal algorithms that consider each attribute
individually (i.e., single-dimensional) appear in [BA05]
and [LDR05]. Mondrian [LDR06] is a multi-dimensional
technique (i.e., it maps the Cartesian product of mul-
tiple attributes), which splits the space recursively simi-
larly to kD-trees. Another multi-dimensional method
based on R+-trees is presented in [IN07]. Finally,
[AFK+06, XWP+06] describe generalization approaches
based on clustering. Since all algorithms replace specif-
ic values with ranges, they incur information loss.

id QI2
t1
t2
t3
t4

1

1

2

3

1

3

2

1

QI1 SA
v1
v2
v3
v4

QI2
1-2

1-2

1-2

3-5

QI1
1-3

1-3

1-3

1-4

SA
v1
v2
v3
v4

Original Table T Anonymized Table AT

t5 3 3 v5
t6 5 4 v6

3-5 1-4

3-5 1-4

v5
v6

x

y

1 2 3 4 5

1

2

3

4

QI1

QI2

t1

t2

t3

t4

t5

t6

group 1
group 2

(a) Original and anonymized T (b) 2-D Representation
Fig. 2.1 Example of RKA

4

In some cases, RKA is not sufficient for protecting
the privacy of microdata. Returning to the example of
Fig. 2.1, assume that AT stores patients' data and the
sensitive attribute is a disease. Ideally, it should not be
possible to link a disease (e.g., v1) to a specific record
(e.g., t1) with probability that exceeds 1/3. This condi-
tion holds if v1 is different from v2 and v3. If, however, v1
is the same as one or both v2 and v3, this probability
increases to 2/3 or 1, respectively. To overcome this
problem, Machanavajjhala et al. [MGKV06] propose the
concept of l-diversity. A table is l-diverse if each ano-
nymized group contains at least l “well-represented”
sensitive attribute values. Ghinita et al. [GKKM07] de-
velop efficient algorithms for RKA and l-diversity by
mapping the multidimensional space to one dimension.

2.2 Spatial K-anonymity (SKA)
We focus mainly on systems based on the user-
anonymizer-LBS framework of Fig. 1.1. In Casper
[MCA06], the anonymizer maintains the locations of
the clients using a pyramid data structure, similar to a
Quad-tree, where the minimum cell size corresponds to
the anonymity resolution. Once the anonymizer rece-
ives a query from U, it uses a hash table on the user ID
pointing to the lowest-level cell c where U lies. If c con-
tains enough users (i.e., |c| ≥ K) for the anonymity
requirements, it forms the ASR. Otherwise (|c|<K), the
horizontal ch and vertical cv neighbors of c are retrieved.
If |c∪ch|≥ K or |c∪cv|≥ K, the corresponding union
of cells becomes the ASR. If both unions contain at least
K users, the ASR is the one with the minimum cardinal-
ity. On the other hand, if |c∪ch| < K and |c∪cv| < K,
the anonymizer retrieves the parent of c and repeats
this process recursively.

We use Fig. 2.2 to illustrate cloaking examples in
Casper. Cells are denoted by the coordinates of their
lower-left and upper-right points. Assume a query q
with K=2. If q is issued by U1 or U2, the ASR is cell 〈(0,2),
(1,3)〉. If q is issued by U3 or U4, the ASR is the union of
cells 〈(1,2), (2,3)〉 ∪ 〈(1,3), (2,4)〉. Finally, if q is issued by
U5, the ASR is the entire data space. Interval Cloak
[GG03] is similar to Casper in terms of both the data
structure used by the anonymizer (a Quad-tree), and
the cloaking algorithm. The main difference is that In-
terval Cloak does not consider neighboring cells at the
same level when determining the ASR, but ascends
directly to the ancestor level. For instance, a query with
K=2 issued by U3 or U4, would generate the ASR 〈(0,2),
(2,4)〉 (instead of 〈(1,2), (2,4)〉 for Casper). As we formally
prove in the Appendix, Casper and Interval Cloak are
secure only for uniform data because neither algorithm
is reciprocal. In Fig. 2.2, although U1 to U4 are in the 2-
ASR of U5, U5 is not in the 2-ASR of any of those users.
Consequently, an attacker that detects an ASR covering
the entire space can infer with high probability that it
originates from U5.

To the best of our knowledge, the only provably se-
cure spatial cloaking technique is Hilbert Cloak
[KGMP07], which has also been implemented on a
Peer-to-Peer system [GKS07]. Hilbert Cloak uses the Hil-
bert space filling curve [B71] to map the 2-D space into
1-D values. These values are then indexed by an anno-
tated B+-tree, which supports efficient search by value
or by rank (i.e., position in the 1-D sorted list). The al-
gorithm partitions the 1-D sorted list into groups of K
users (the last group may have up to 2K-1 users). For a
querying user U the algorithm finds the group where U
belongs, and returns the MBR of the group as the ASR.
The same ASR is returned for any user in a given
group; therefore the algorithm is reciprocal.

While in all the above systems the cloaking mechan-
ism is independent of the query type, processing at the
LBS depends on the query. Range queries are
straightforward: assume that U wants to retrieve the
data objects within distance d from its current location.
Instead of the position of U, the LBS receives an ASR
and d. In order to compute the candidate results, it ex-
tends the ASR by d on all dimensions and searches for
all objects in the extended ASR. On the other hand, for
NN queries the candidate results can be retrieved using
range nearest neighbor search [HL05], which finds the NN
of any point inside an area. Casper and Hilbert Cloak
include specialized processing techniques. We assume
that the LBS implements these query processing me-
chanisms, and focus on spatial cloaking.

Finally, the privacy of user locations has also been
studied in the context of related problems. Clique Cloak
[GL05] combines spatial with temporal cloaking. Each
query q specifies a temporal interval �t that the corres-
ponding user U is willing to wait. If within �t, K-1 other
clients in the vicinity of U also issue queries, all these
queries are combined in a single ASR. Otherwise, q is
rejected. Probabilistic Cloaking [CZBP06] does not apply
the concept of SKA; instead, the ASR is a closed region
around the query point, which is independent of the
number of users inside. Given an ASR, the LBS returns
the probability that each candidate result satisfies the
query based on its location with respect to the ASR.
Khoshgozaran and Shahabi [KS07] employ 1-D trans-
formation and encryption to conceal both the spatial
data and the queries from the LBS. Kamat et al.
[KZTO05] propose a model for sensor networks and

U4

U2 U3

(0,0)

(4,4)

(2,2)(0,2)

(0,3) (1,3)

(1,2)

(2,3)

(2,4)

U5

(1,4)

U1

(2,1)

(2,0)

(3,2) (4,2)

Fig. 2.2 Cloaking in Casper

5

examine the privacy characteristics of different sensor
routing protocols. Hoh and Gruteser [HG05] describe
techniques for hiding the trajectory of users in applica-
tions that continuously collect location samples.

2.3 Comparison between RKA and SKA
Relational and spatial k-anonymity have some impor-
tant similarities, as well as differences. In terms of simi-
larity, microdata tuples are often viewed as points in a
multi-dimensional space, where each quasi-identifier
attribute corresponds to a dimension (see Fig. 2.1b).
Generalization, like spatial cloaking, replaces a point
with a multidimensional range (i.e., an ASR). In fact,
some relational generalization algorithms are directly
motivated by spatial indices [LDR06, IN07], or cluster-
ing techniques [AFK+06, XWP+06]. Furthermore, the
certainty penalty [XWP+06], used to measure informa-
tion loss in RKA, is analogous to the effectiveness crite-
rion in SKA that aims at minimizing the ASR.

Regarding the differences between RKA and SKA,
RKA involves static data and a single value of K, whe-
reas SKA deals with moving users and variable K. RKA
methods precompute a partitioning of the entire table
into a set of groups containing at least K tuples. Each
tuple belongs to exactly one group; therefore, the reci-
procity property is satisfied by default. In contrast, SKA
performs on-the-fly anonymization, involving only a
small subset of the data in the neighborhood of the que-
rying user. Unless special care is taken, a set of users
may not always belong to the same group. Consequent-
ly, guaranteeing reciprocity is not trivial. Furthermore,
since SKA is initiated by a querying user, suppression,
often used in RKA to remove tuples that cannot be ef-
fectively generalized, should be avoided in SKA be-
cause it would lead to service denial for the corres-
ponding user. Finally, as opposed to RKA, in SKA there
is no concept of information loss; a small ASR is benefi-
cial in terms of processing cost and network overhead,
but a user will eventually obtain the correct results after
they are filtered by the anonymizer, regardless of ASR
size.

3 RECIPROCAL FRAMEWORK
We consider the architecture of Fig. 1.1, where an ano-
nymizer receives queries from geographically distri-
buted users, removes the user IDs, hides their locations,
and forwards the resulting ASRs to the LBS. Each query
has a variable degree of anonymity K, which ranges
between 1 (no privacy requirements) and the user car-
dinality (maximum privacy). The value of K is not sub-
ject to attacks since it is transferred from the client to
the anonymizer through a secure channel. Queries are
related to the position of the user (e.g., a user asking
about its nearest restaurant, or all the restaurants with-
in a range), but the type of query (i.e., NN or range) is

not important for spatial cloaking.
We assume an attacker that (i) intercepts the ASR,

(ii) knows the cloaking algorithm used by the anony-
mizer, and (iii) can obtain the current locations of all
users. The first assumption implies that either the LBS
is not trusted, or the communication channel between
the anonymizer and the LBS is not secure. The second
assumption is common in the literature since the data
security techniques are normally public. The third as-
sumption is motivated by the fact that users may often
issue queries from the same locations (home, office),
which could be identified through physical observa-
tion, triangulation, telephone catalogs etc. In the worst
case, an attacker may be able to obtain the positions of
all users in the AS of the query. Since it is difficult to
model the exact knowledge available to the attacker,
the third assumption is necessary in order to prove
theoretically that the anonymization method is secure
under the most pessimistic scenario. On the other hand,
because in practice the attacker does not have all user
locations, it is important that the anonymization me-
thod does not reveal the position of any user, to avoid
giving away additional information.

Similar to [GG03, GL05, CML06, MCA06, KGMP07]
we focus on snapshot queries, where the attacker uses
current data, but not historical information about repe-
titive queries by the same user at a specific location or
time. This assumption is reasonable in practice because
if a client obtains the items of interest (e.g., the closest
restaurant), it is unlikely to ask the same query from the
same location again in the future. Finally, for ease of
presentation, we consider that a query originates from
any client with equal probability. We will remove this
assumption in Section 5.

The anonymizer indexes the user locations by a hie-
rarchical (i.e., tree-based) spatial index (e.g., R*-tree,
Quad-tree, etc). Let U be the user issuing a query. We
propose a general spatial cloaking algorithm, called
Reciprocal, which traverses the tree and generates a re-
ciprocal AS that contains U and at least K-1 users in its
vicinity. The resulting ASR is the area that encloses all
elements of the AS. Fig. 3.1 illustrates the pseudo-code
for the reciprocal framework. Let N be the leaf node
that contains U. Reciprocal traverses the tree in a bot-
tom-up fashion, starting from N. The important obser-
vation here is that even if N contains enough (≥K)
points (we use the terms point, user and client, inter-
changeably) for the anonymity requirements, we still
have to traverse the tree bottom-up (lines 1-2), if there
is a node N' at the same level such that 0 < |N'| < K
because N' may contain a user U' whose AS includes U.

Let AN be the ancestor of N when the bottom-up
traversal stops. Each node at the level of AN is either
empty (non-balanced trees such as the Quad-tree can
have empty nodes at any level), or contains at least K
users in its sub-tree. This implies that the AS can be

6

determined locally within AN because all other queries
(originating outside AN) do not need to include users of
AN in their AS. Having established that AN can auto-
nomously generate a K-ASR, Reciprocal traverses AN
top-down towards U (lines 3-4) as long as each sub-tree
has at least K points3. Let PN be the node in AN where
the top-down traversal stops. PN includes U in its sub-
tree and some of its child nodes have fewer than K
points. PN is called the partition node, and corresponds
to the lowest ancestor of U where we can achieve reci-
procity. This is because all nodes in the sub-tree of AN
and at the level of PN or above, contain at least K
points, and thus can generate ASRs without using any
points in PN.

Algorithm Reciprocal (query issuing user U, anonymity require-
ment K, node N)
// initially N is the leaf node containing U
1. While there is a non-empty node at the same level as N
 with < K users
2. N = parent of N //bottom-up traversal
3. While N is not a leaf and (each child of N is either empty or
 contains ≥ K users)
4. N = child of N that contains U //top-down traversal
5. ASR=Partition(U, K, N)
Fig. 3.1 Reciprocal Cloaking

PN may contain numerous (>>K) points, which is
likely to yield very large ASRs. Partition (line 5) elimi-
nates this problem by grouping these points into dis-
joint buckets. The users in the same bucket bU as U form
the AS for the query. Several partitioning methods can
be used (see Section 4), provided that:
(i) each bucket contains at least K and no more than

2K-1 points. The lower bound is due to the K-
anonymity requirement. The upper bound is due to
the fact that if the cardinality of a bucket exceeds
2K-1, the bucket can be split into smaller ones, each
containing at least K users.

(ii) partitioning is independent of the query point. Each
user in the node will generate the same partitioning
for the same K. This property guarantees reciprocity.

After determining the AS, we form the ASR as the
minimum bounding rectangle (MBR) covering AS. Note
that the MBR may enclose some additional users that
are not in AS. Compared to the fixed cells of Casper and
Interval Cloak, MBRs adapt more effectively to the den-
sity around the query, i.e., if the query lies in an area
with numerous users, the ASR is likely to be small. The
disadvantage is that the MBR reveals the coordinates of
points on its boundaries. Furthermore, in case that
there are K (or more) users at the same location, the
ASR may degenerate to a single point and disclose the
positions of these users. A simple way to overcome

3 While bottom-up traversal considers the cardinality of all nodes at

a level, top-down only considers the cardinalities at a single path.

these problems is to superimpose a grid where the cell
size corresponds to the anonymity resolution. Then, the
ASR sent to the LBS is the minimum enlargement that
aligns the MBR to the grid. For the following discussion
we omit this modification because the cell size depends
on the application requirements for the anonymity
resolution. Furthermore, spatial cloaking should be
secure even if the attacker has complete knowledge of
all the user positions.

Reciprocal can be applied in conjunction with main-
memory, or disk-based, and space-partitioning, or data-
partitioning indices. The following example demon-
strates Reciprocal on top of a Quad-tree. We will present
R*-tree examples in Section 4.

Example [Quad-tree Cloak]: Fig. 3.2a illustrates an ex-
ample where 6 clients are indexed by a Quad-tree (level
1 corresponds to the leaf cells). Assume a query with
K=2 originating from U1. Since the cell 〈(0,2), (1,3)〉 of U1
already contains 2 clients, Casper (and Interval Cloak)
would use it directly as the ASR. This violates reciproci-
ty because there are four level-1 cells that contain a sin-
gle point; e.g., a query with K=2 from any of these cells
could include U1 in its AS. In contrast, Quad-tree Cloak
(QC) ascends to level 2, where there still exist non-
empty cells (e.g. 〈(0,0), (2,2)〉) with fewer than K users.
Finally, QC reaches the root and sets AN=PN=〈(0,0),
(4,4)〉. The same partition node is obtained for all users
given K=2. In the above query, PN contains 6 points,
although only 2 are required for the anonymity re-
quirements. Partition groups these 6 points into buckets
of 2 or 3 (i.e. K to 2K-1), and includes in AS the users
from the same bucket bU as U1. Assuming that AS={U1,
U2, U6}, the ASR is the shaded MBR of Fig. 3.2a.

U4

U2 U3

(0,0)

(4,4)

(2,2)(0,2)

(0,3) (1,3)

(1,2)

(2,3)

(2,4)

U5

(1,4)

U1

(2,0)

(3,4)

(4,2)

U6

(0,1) (1,1)

U4

U2

U3

(0,0)

(4,4)

(2,2)(0,2)

(0,3) (1,3)

(1,2)

(2,3)

(2,4)

U5

(1,4)

U1

(2,1)

(2,0)

(3,2) (4,2)

U6

(3,0)

(4,1)

(a) Partitioning at root level (b) Partitioning at leaf level
Fig. 3.2 Examples of reciprocal Quad-tree Cloak (QC)

Fig. 3.2b illustrates a second example, which also in-
volves top-down traversal. Given again a query with
K=2 from U1, the bottom-up traversal stops at level 2
with AN=〈(0,2), (2,4)〉 because all non-empty cells at this
level have at least 2 points. Furthermore, both non-
empty children of AN, 〈(0,2), (1,3)〉 and 〈(1,3), (2,4)〉, also
include 2 points each. Therefore, QC descends to level 1
and sets the partition node to PN=〈(0,2), (1,3)〉. Since
this cell contains only U1 and U2, Partition returns di-
rectly the MBR of these users, without performing

7

grouping. In general, if |PN|<2K, then there is a single
bucket containing all the points in PN.

Theorem 1. Reciprocal guarantees spatial K-anonymity

Proof. We show that each AS generated by Reciprocal
satisfies reciprocity, by retracing the steps of the al-
gorithm. The bottom-up traversal terminates at an
ancestor node AN such that each node at the level of
AN is either empty or contains at least K users.
Therefore, no user in AN belongs to the AS of any
other user outside AN, and vice versa. The top-down
traversal determines a partition node PN, that satis-
fies similar conditions, i.e., each sibling of PN (under
the same parent) is either empty or has at least K
points in its sub-tree. Thus, an AS can be assembled
locally in PN without violating reciprocity. Finally,
Partition generates buckets that by definition obey
reciprocity, since each bucket contains at least K us-
ers, and each query with the same K from a user in
PN will lead to exactly the same bucket.

Note that RKA methods based on spatial indices (KD-
trees [LDR06] or R+-trees [IN07]) assume a fixed value
of K, and compute a partitioning of the entire table into
a set of groups containing at least K tuples. On the other
hand, we consider variable K for each query, dynamic
datasets, and we only care about the group containing
the query. In this setting, methods such as [LDR06,
IN07] would require bulk-loading an index for each
query, leading to unnecessary (and very high) cost.
Another simple alternative would be to maintain the
spatial index incrementally. Given a query with a re-
quirement K, we could load all the points and apply
Partition(U, K, root), i.e., directly set AN = PN = root,
without performing bottom-up and top-down traver-
sals. As opposed to RKA generalization techniques,
Partition returns a single group (instead of the entire
anonymized table). However, this approach would also
be inefficient because it has to access all the user loca-
tions, whereas Reciprocal only retrieves the users neces-
sary for building the ASR.

Reciprocal needs the cardinality of the node with the
minimum number of points per level. These numbers
(i.e., one per level) can be explicitly stored and updated
when there is change in the tree structure. Alternative-
ly, if the index has a minimum node utilization M (e.g.,
R-trees), we can set the minimum cardinality at level i
to its lower bound Mi (leaves are at level 1). This does
not affect correctness, but may have a negative impact
on performance, if the actual minimum cardinality is
significantly higher than the lower bound. Further-
more, the top-down traversal requires the number of
points in each entry of an intermediate node (line 3).
We assume that this number is stored with the corres-
ponding entry. Such structures are called aggregate in-
dices, and have been used extensively in spatio-
temporal data warehouses [TP05]. Finally, the location

updates issued by the users are handled by the defaul
algorithms of the the indices, without any effect on
anonymization.

4 PARTITIONING METHODS
Given a partition node PN, Partition (line 5 in Fig. 3.1)
splits the users inside the sub-tree of PN into buckets
containing between K and 2K-1 users. Sections 4.1 and
4.2 present alternative partitioning algorithms with
different tradeoffs in terms of efficiency and effective-
ness. Although both techniques can be used with any
spatial index, the examples assume an aggregate R*-tree
(aR*-tree [TP05]), i.e., an R*-tree where each interme-
diate node entry stores the total number of points in the
corresponding sub-tree. The resulting implementation
is called R-Tree Cloak (RC). For ease of presentation, we
assume that the minimum node cardinality Mi per level
i is M, where M is the R*-tree minimum node utilization
(usually 40% of the node capacity).

4.1 Greedy Hilbert Partitioning (GH)
Let LN be the leaf node containing the query issuer. We
first consider that partitioning takes place at the leaf
level, i.e., K ≤ M and PN=LN. Similar to Hilbert Cloak
[KGMP07], GH sorts the points in LN according to their
Hilbert value. The Hilbert space filling curve trans-
forms the multi-dimensional coordinates of each user U
into an 1-D value H(U). Fig. 4.1 illustrates the Hilbert
curve for a 2-D space using a 8x8 space partitioning. A
point U is assigned the value H(U) of the cell that cov-
ers it. If two users are near each other in the 2-D space,
they are likely to be close in the 1-D transformation.
Given a query with required anonymization degree K,
GH assigns the first K points (in the Hilbert order) to
the first bucket, the next K points to the second bucket
and so on. Consequently, each bucket contains exactly
K users, except for the last one that may include up to
2K-1 users. Let r(U) be the rank of U in the Hilbert or-
der (1≤ r(U) ≤ |LN|). The bucket bU of U contains all
clients whose ranks are in the range [s, e], where s = rU-
(rU-1) mod K and e =s + K-1 (unless bU is the last bucket).

Fig. 4.1 elaborates the application of GH to a leaf

PN

...... ...

leaf level 1

... U

10

... ...

10 15 10 15

LN1 LN2 LN3 LN4 LN5

level 2

10 from LN1

Buckets for K=30

Buckets for K=20

2 3 5 from LN310 from LN 10 from LN 410 from LN 515 from LN

10 from LN1 210 from LN 315 from LN 45 from LN 45 from LN 515 from LN

...

...

...

potential bU

bU

Fig. 4.2 GH partitioning for level 2

8

node containing 10 users, whose IDs are ordered ac-
cording to their Hilbert value. Consider a query from
U7 with K=5. The rank of U7 is r(U7)=7. The bucket con-
taining U7 starts at s =7 - 6 mod 5 = 6 and ends at e=10,
i.e., it contains all users U6 to U10. Its ASR is the MBR
(shaded rectangle at the upper-right corner) covering
the corresponding points. Any query with K=5 originat-
ing from these users will generate the same bU, AS and
ASR, thus, guaranteeing reciprocity. Note that GH con-
structs on-the-fly only bU, as the remaining buckets are
irrelevant to the query. Fig. 4.1 illustrates another ASR
(shaded rectangle at the lower-left corner) for a query
with K=3 originating from one of U1 to U3.

U3

U1

U2 U10

U9

U6
U8

U7

U5U4

Hilbert Curve

U1 U2 U3 U4 U5 U7 U8 U9 U10U6

Buckets for K=3

Buckets for K=4

Leaf node LN

3-ASR

Buckets for K=5

for U , U , or U2 31

5-ASR
for U to U 106

Ranks: 1 2 3 4 5 6 7 8 9 10

U1 U2 U3 U4 U5 U7 U8 U9 U10U6

U1 U2 U3 U4 U5 U7 U8 U9 U10U6

Fig. 4.1 GH partitioning for (leaf) level 1

In case that partitioning takes place above the leaf
level, GH could simply load the entire sub-tree of the
partition node PN and compute bU (and its ASR) as
above, similarly to Hilbert Cloak. However, this process
is not necessary since we only need bU (and not the oth-
er buckets at this level). Fig. 4.2 shows an example,
where the query issuer U is in leaf node LN4. The leaves
are numbered according to their Hilbert order in the
parent PN. I.e, each node is assigned the Hilbert value
of the cell that covers its center in the data space de-
fined by the MBR of PN. The cardinality of each leaf
node is shown in the corresponding entry of PN.

If K=30, the bucket bU includes 5 users from LN3, 10
users from LN4 and 15 users from LN5. The nodes that
must be accessed are LN4, PN, and LN3. Inside LN3, only
the 5 last users in the Hilbert order (in the data space
defined by the MBR of LN3) contribute to bU, while the
rest are assigned to the first bucket (not computed).
Note that since the entire LN5 is included in bU the node
is not visited, but its MBR is simply merged to that of the
bucket. In some cases the leaf node containing U may
fall on the boundary between two buckets. In Fig. 4.2, if
K=20, the first 5 users of LN4 are assigned to the second
bucket, and the remaining to the third one. Depending
on the position of U in the Hilbert order, either of these
two buckets constitutes bU.

Fig. 4.3 illustrates the general GH method. First, GH
computes the extent of the bucket bU that contains U.
Recall that this requires the rank of U in the Hilbert
order of N. The function compute-rank performs this
computation in a recursive manner. Specifically, rU is

the rank of U in LN plus the sum of cardinalities of all
nodes that precede the ancestors of U in the path from
LN to PN. For instance, if K=30 in Fig. 4.2, then rU is the
rank of U among the points of LN4 added to the cardi-
nalities of LN1 to LN3. Once bU has been determined, all
the leaf nodes that contribute points to bU participate in
the ASR construction through the merge function. The
merging process is also recursive: If an entry E is totally
included within the bucket, it causes the replacement of
the ASR with a larger one, whose maximum (mini-
mum) coordinate on each axis is the maximum (mini-
mum) between the corresponding coordinates of E and
the original ASR. If E is only partially included, we
have to read its contents and repeat this process; there
can be at most two such entries per level.

GH involves accessing only (i) the nodes in the path
LN to PN (i.e., one node per level) (ii) leaf nodes that
are partially (but not totally) included in bU (i.e., at most
two nodes). The first set of nodes is used for the com-
putation of rU. Other intermediate nodes are not neces-
sary since their contribution to rU is determined by their
cardinalities, which are stored with their parent entries
(lines 13-14). Furthermore, leaf nodes that do not inter-
sect bU are ignored, whereas the MBRs of those totally
included in bU, are directly aggregated in the ASR.

For index structures that impose a minimum occu-
pancy constraint M, such as the R-tree, the PN node is
situated at height at most ⎡logMK⎤. At each level below
the PN node, at most two nodes are accessed, hence the
I/O cost is O(logMK). The computation complexity of
GH includes: (i) sorting of entries according to Hilbert
values (line 8) in each accessed node, which takes
O(M⋅log2M⋅logMK), (ii) computation of bucket extent
(lines 3-5) which has O(1) cost, and (iii) determining the
ASR extent (17-23) with O(M⋅logMK) cost. Therefore, the
overall computational complexity is O(M⋅log2M⋅logMK).

4.2 Asymmetric R-tree Split (AR)
The AR partitioning method is inspired by the R*-tree
construction algorithm4, which is known to have good
locality properties. A straightforward approach is to
apply the R*-split [BKSS90] on the partition node, after
setting the minimum node utilization to K. Specifically,
R*-split first sorts all points by their x-coordinates.
Then, it considers every division of the sorted list in
two nodes N, N' so that each node contains at least K
points, and computes the perimeters of N and N'. The
overall perimeter on the x-axis equals the sum of all the
perimeters. The process is repeated for the y-axis, and
the axis with the minimal overall perimeter becomes
the split dimension. Subsequently, R*-split examines
again all possible divisions on the selected dimension,

4 Although AR is inspired by R*-tree, the method can be used on top

of any spatial index including the Quad-tree (see experimental evalua-
tion).

9

and selects the one that yields the minimum overlap
between the MBRs of the resulting nodes. The split is
recursively applied on each partition with more than
2K users.

R*-split has some shortcomings with respect to the
problem at hand. First it attempts to minimize factors
such as perimeter and overlap of the resulting nodes,
whereas we aim at minimizing the ASR area. Even if
we modify the algorithm to consider only the ASR area,
R*-split can still lead to fragmentation, i.e., a split may
create partitions with a large number of redundant us-
ers, such that no subsequent splits are possible. As an
example, consider that we want to partition the 6 points
of Fig. 4.4a into buckets, so that each bucket contains at
least K=2 users. The split point that minimizes the sum
of resulting areas is x=C, which eliminates the largest
gap (i.e., “dead area”) between partitions P1 and P2. No
further split can be performed, since each new node
contains 3 users.

To address the problem of fragmentation, AR takes
into account both the area and the cardinality of the
resulting partitions. Specifically, AR generates parti-
tions P1 and P2 that minimize the objective function:

[ASR(P1)+ ASR(P2)]⋅|P1|⋅|P2|

subject to the constraint that |P1| and |P2| are at least
K. AR favors unbalanced splits, which are desirable,
since they achieve low fragmentation. Continuing the

example in Fig. 4.4b, any of the split points C1 or C2

would yield split cost (200+620)⋅2⋅4 = 6560, compared to
2⋅400⋅3⋅3 = 7200 generated by C. Hence, AR would split
on either C1 or C2, and subsequently allow a second
split, resulting in three ASRs, with a total weighted
ASR area of 2⋅(200+110+200) =1020, compared to 2400
for R*-split.
Fig. 4.5 shows the pseudocode for AR. Lines 6-15 of
compute-ASR(U,N) identify the best split_point (accord-
ing to the objective function) for splitting node N by
looping over all dimensions and split points in the
range K to |N|–K. Let listsplit_dim be the list of points
sorted on the split dimension. The position of U in
listsplit_dim determines the partition N' that contains it. If
U is before split_point, then N' includes all points of
listsplit_dim in the range [1, split_point]. Otherwise, N' in-
cludes all points in the range [split_point+1, |listsplit_dim|].
In either case, N' is split recursively. Note that the other
partition of N is not split as it is not necessary for the
computation of bU.

Similarly to GH, if an index with minimum node oc-
cupancy is used, the PN node is situated at height at
most ⎡logMK⎤. However, this time all nodes under PN
need to be accessed, with an I/O cost of
O(1+M+M2+…+M�) where � = ⎡logMK⎤, which equals to
O(K). The computation complexity of AR is a function
of K and |PN|: at each split of a partition P with more
than 2K–1 points, a sorting phase is employed, with
cost |P|⋅log|P|. In the worst case, each split is unba-
lanced, and yields two partitions with cardinalities
|P|–K and K; the former is split further, until it has less
than 2K points. The complexity is:

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= ∑∑

==

PN
K

PN
KiiKiKiK

KPN

i

KPN

i
logO)log(log)log()(

2/||

2

/||

2

The proposed partitioning techniques provide dif-
ferent tradeoffs of efficiency and effectiveness. GH,
which is very localized, is fast in terms of both I/O and
CPU cost but may yield large ASRs. On the other hand,
AR is more expensive, since it has to read the entire
sub-tree of PN and perform CPU-intensive computa-
tions, but it yields smaller ASRs. The choice of the parti-
tioning technique depends on the application characte-
ristics. If, for instance, the anonymizer charges clients
according to their usage, and the LBS is a public ser-

GH-partitioning(query issuing user U, anonymity requirement K,
partition node PN)
1. ASR =∅
2. rU = compute-rank(PN,0)
3. s = rU -(rU -1) modulo K ; e =s + K-1 // extent of bU
4. If |PN|-e < K // bU is the last bucket
5. e=|PN|; s = e - (e mod K) - K + 1
6. For each entry E of PN intersecting bU=[s,e] //E is point or node
7. ASR = merge(E,ASR)

compute-rank(N, rU)
8. list=sort entries of N according to their Hilbert value in the data
space defined by the MBR of N
9. If N is a leaf node
10. rU= rU +position of U in list
11. Else // N is an intermediate node
12. Let E be the entry that contains U
13. For each entry E' before E in list
14. rU= rU +| E'|
15. rU =compute-rank(E, rU)
16. Return rU

merge(E, ASR)
17. If E is totally included in bU = [s,e]
18. For each dimension d
19. ASRd-min=min(ASRd-min, Ed-min)
20. ASRd-max=max(ASRd-max, Ed-max)
21. Else // E intersects but is not included in bU
22. For each entry E' of E that intersects bU = [s,e]
23. ASR = merge(E', ASR)
Fig. 4.3 Greedy Hilbert - general method

20

10

615141302010

CP1 P2

U4

U3

U2

U5

U1
30

U6
40

 C1 C2P 1 P 3P 2

20

10

615141302010

U4

U3

U2

U5

U1
30

U6

40

(a) R*-split (b) AR
Fig. 4.4 R*-tree split vs AR

10

vice, it may be preferable to use GH. On the other hand,
if the LBS imposes limitations (e.g., on the number of
results, processing time, etc) AR is a better choice. In
Section 6, we experimentally evaluate these tradeoffs.

5 SKA WITH VARIABLE QUERY FREQUENCIES
So far, we assumed that every user may issue a query
with equal probability. However, in practice, the query
frequency distribution among users can be skewed. For
instance, a taxi driver may issue numerous queries due
to the nature of his occupation. In this section we ex-
tend the reciprocal framework to variable query frequen-
cies. Assuming the worst case scenario, we consider
that the attacker knows the query frequencies of all us-
ers (e.g., by obtaining billing records).

The definition of SKA is the same as for uniform
query frequencies, but the reciprocity property as dis-
cussed so far is not sufficient to guarantee SKA. Con-
sider, for instance, AS={U1,U2,…,UK}, with user query
frequencies F1,F2,…,F|K| and that U1 has twice the query
frequency of the other users in AS. Even if AS satisfies
reciprocity, based on the knowledge of frequencies, an
attacker can pinpoint U1 as the source with probability
F1/(F1+F2+…+FK) = 2/(K+1) > 1/K for all values of K>1.
If a query has anonymity degree K, in order to preserve
SKA it is necessary that, Fi/(F1+F2+…+FK) ≤ 1/K,
∀Ui∈AS. Below, we generalize the reciprocity require-
ment to incorporate information about query frequen-
cies:

Definition [Frequency-Aware Reciprocity (FQR)]. Con-
sider a user U with query frequency F issuing a

query with anonymity degree K, anonymizing set
AS = {U1,U2,…,U|AS|}, and anonymizing spatial region
ASR. AS satisfies the frequency-aware reciprocity
(FQR) property if (i) it contains U, (ii) every Ui∈AS
generates the same anonymizing set AS for the same
value of K and (iii) ∀Ui∈AS, it holds that
Fi/(F1+F2+…+F|AS|) ≤ 1/K.

An immediate consequence of condition (iii) is that
K⋅Fmax ≤ (F1+F2+…+F|AS|), where Fmax is the maximum
query frequency of any user in AS. Note that the reci-
procity property discussed in the previous sections is a
special case of FQR where all users have equal query
frequency.

The reciprocal framework can be extended to achieve
FQR by incorporating frequency-related information.
Assume frequency is represented as the number of que-
ries issued by each user in a previous time interval. For
each sub-tree, i.e. internal index node N, we store the
sum of frequencies F of users rooted at N, together with
the maximum frequency Fmax in the sub-tree. N can ac-
commodate by itself any query with K < F/Fmax. The al-
gorithm of Fig. 3.1 remains the same, except from line 3,
which changes to:

3. While N is not a leaf and (each child of N is empty or K < F/Fmax)

Next, we discuss how GH can be extended to ac-
commodate FQR. Recall that, after the partition node
PN has been determined, GH sorts the points according
to Hilbert values, and creates buckets that contain at
least K consecutive points. In the case of Frequency-
Aware GH (FQGH), each point is conceptually repli-
cated a number of times equal to its query frequency.
Hence, each point appears multiple times in the Hilbert
sequence, although it is physically stored only once in
the index, along with its frequency. The resulting se-
quence is split into buckets of K⋅Fmax each, where Fmax is
the maximum frequency that occurs in PN. Fig. 5.1 illu-
strates an example: each node stores the additional fre-
quency information. At the level 2 PN node, the total
number of queries in the sub-tree is F=28, whereas
Fmax=7. Assume a query with K=2: the splitting into
buckets is performed with respect to K⋅Fmax = 2⋅7 = 14,
and buckets B1 and B2 are obtained.

PN

leaf level 1

U

7 4 11 6

LN1 LN2 LN3 LN4

level 2
F=28, Fmax=7

U
2

UU U U U U U U U
2 3 1 2 1 2 2 3 1 2

3 4
7

U

Bucket B (14)

1 2 3 4 5 6 7 8 9 10 11 12

Bucket B (14)1 2
Fig. 5.1 FQGH partitioning, K=2

Since the split is performed with respect to frequen-
cies, it is possible for a user to belong to more than one

AR (query issuing user U, anonymity requirement K, partition
node PN)
1. Load all points in PN
2. compute-ASR (U, PN)

compute-ASR(U, N)
3. If |N| < 2K
4. return MBR(N)
5. min_split_cost = ∞
6. For d = 1 to #dimensions // for each dimension
7. listd = sort points according to d coordinate
8. For point = K to |N|- K
9. P1 = listd[1 .. point]
10. P2 = listd[point +1 .. |listd|]
11. split_cost = (ASR(P1) + ASR(P2))⋅|P1|⋅|P2|
12. If split_cost < min_split_cost
13. min_split_cost = split_cost;
14. split_point = point;
15. split_dim = d;
16. If rank(U) in listsplit_dim ≤ split_point
17. N'=points in listsplit_dim[1 .. split_point])
18. Else // U is in the second node of the split
19. N'=points in listsplit_dim[split_point+1..|listsplit_dim|])
20. Return compute-ASR(U, N')
Fig. 4.5 Asymmetric R-tree Split (AR)

11

bucket. However, because the bucket size is at least
K⋅Fmax, it is straightforward to show that a user can be-
long to at most two buckets. Assume that querying user
U contributes with a fraction p of its queries to B1, and
(1-p) to B2. Then, B1 will be chosen as ASR with proba-
bility p, and B2 with (1-p). In Fig. 5.1, U7 contributes with
3/7 of its points to B1, and 4/7 to B2; hence, if U7 issues
a query with K=2, the respective generation probabili-
ties for the two buckets are 0.43 and 0.57.

Similar to GH, FQGH only needs to access at most
two leaf nodes for each query, therefore it is efficient.
Furthermore, the Hilbert sorting is performed based on
user locations, and it is oblivious to the query frequen-
cies; hence, the complexity of FQGH is similar to that of
GH. AR can be extended to accommodate FQR in a
similar manner. However, in practice, query frequency
distribution is expected to be skewed, in which case
partitioning techniques that require the retrieval of the
entire PN sub-tree are not practical because a much
larger number of users than K are required to achieve
SKA. We experimentally verify this claim in the next
section.

6 EXPERIMENTAL EVALUATION
We implemented a C++ prototype of the anonymizer
and deployed it on an Intel Xeon 2.8GHz machine run-
ning Linux OS. The anonymizer indexes the user loca-
tions, which are taken from the NA dataset (available at
www.rtreeportal.org) containing 569K intersections of
the North American road network. K ranges from 10 to
1000. In each experiment, we generate 1000 queries ori-
ginating at random users. Effectiveness is measured as
the average ASR area, expressed as a percentage of the
entire data space. Efficiency is measured in terms of
average ASR generation time. The average cost per
random I/O is 5ms, and each index has a cache equal to
10% of the entire index. For I/O efficiency, we imple-
mented Quad-trees using linear representation [A84],
which is easily embeddable into B+-trees.

6.1 Evaluation of Partitioning Techniques
First, we consider the RC implementation of Reciprocal
and compare the proposed partition methods (GH and
AR) against a benchmark from the RKA literature. Spe-
cifically, we adapt Top Down (TD), a divisive clustering-
based approach that builds anonymized groups with
cardinality bounded between K and 2K–1 [XWP+06].
The adaptation works as follows. Once the partition
node PN has been determined, all points of PN form
one large cluster. TD chooses as seeds two of the most
distant points (through an approximate, iterative, linear
technique) and divides the cluster among the seeds, so
that the extents of the resulting clusters are minimized.
The process is repeated recursively for all resulting
clusters with cardinality 2K or higher. After completion

of this step, some clusters (called runts) may have fewer
than K items. To preserve the K-anonymity require-
ment, a runt may either be merged with another runt,
or borrow points from one of the clusters with more
than K items. The algorithm terminates when all clus-
ters have at least K items. TD has O(|PN|2) computa-
tion complexity and O(K) I/O cost.

Fig. 6.1 illustrates the ASR area and generation time
as a function of K, for 4KB page size. AR has the clear
advantage in ASR area, while GH is considerably faster.
Note that generation time exhibits a jump after K=80 for
all methods except GH. For the 4KB page size, the min-
imum occupancy of the underlying R*-tree index is 85.
Hence for K ≤ 85, ASRs are generated within one leaf
node (at level 1). As K increases beyond this threshold,
the ASR is created in a partition node PN at level 2. GH
retrieves only a small number of leaf nodes (under PN).
On the other hand, AR and TD need to scan the entire
sub-tree of PN, leading to significantly more I/Os. Fur-
thermore, the processing time, which is a function of
the input size, increases accordingly. For a fixed num-
ber of data points under PN, the generation time of AR
decreases with larger K because the number of splits
drops (i.e., there are fewer, larger buckets). TD is ex-
pensive for partitioning at level 2 (in some cases up to
100 sec per query) and omitted for K >80.

Fig. 6.2 repeats the same experiment for the Quad-
tree (QC) implementation of Reciprocal. While the ASR
area is similar to RC, the generation time is considera-
bly higher for QC due to the lack of balance in the in-
dex structure, resulting in a large number of points un-
der the PN node.

In Fig. 6.3 we vary the page size, and measure the

(a) Area (b) Time

Fig. 6.1 RC: Partitioning methods versus K

(a) Area (b) Time

Fig. 6.2 QC: Partitioning methods versus K

12

ASR area and generation time for RC, when K = 400. As
the page size increases, ASRs need to span across fewer
leaf nodes. Therefore, we expect the effectiveness to
improve, as the good locality properties of the underly-
ing R*-tree index are better exploited. For page sizes
from 2 to 8KB, this is indeed the case. However, initial-
ly GH exhibits an increasing trend because, for 1KB
page size, the K = 400 setting coincides with the mini-
mum occupancy at level 2. Hence, a point of conver-
gence occurs, which helps GH to obtain smaller ASRs.
A larger page size also translates into increased genera-
tion time, as the cardinality of the partition node in-
creases. TD is very expensive for sizes exceeding 2KB
(for 8 KB page size, it needs 400sec per query). The cost
of AR grows due to the recursive splits. GH is rather
insensitive to the page size since it computes a single
bucket, independently of node cardinality.

Fig. 6.4 shows the same experiment for QC. Observe
that the page size does not affect the ASR area, which
only depends on the Quad-tree hierarchy. On the other
hand, a larger page increases the occupancy of leaf
nodes, and reduces the I/O cost, as shown in Fig. 6.4b
(TD is omitted due to very high values).

Summarizing, GH is the most efficient partitioning
method, whereas AR is the most effective. The perfor-
mance of TD is unsatisfactory, as it is extremely expen-
sive and produces ASRs with quality comparable to
GH. Regarding the R-tree and Quad-tree implementa-
tions, they offer similar ASR areas, but RC is faster.
Based on the above, RC-GH is the method of choice for
efficiency (e.g., when the anonymizer charges clients
according to their usage and the LBS is a public service)
and RC-AR the winner when effectiveness is more im-

portant (e.g., free anonymizer service and expensive
LBS). Next, we compare RC-GH and RC-AR against
Hilbert Cloak (HC).

6.2 Comparison with Hilbert Cloak (HC)
Fig. 6.5 shows the relative performance of RC-GH, RC-
AR and HC. RC-GH is slightly better than HC in terms
of ASR size and up to one order of magnitude faster, as
can be observed from the log-scale graph in Fig. 6.5b.
Although HC applies a Hilbert sorting method similar
to RC-GH and does not incur the overhead of finding
the PN node, it still needs to retrieve from the disk O(K)
leaf entries. In contrast, RC-GH, which maintains MBR
information in the internal nodes, only needs to access
two leaf nodes per query. Note that the RC-GH genera-
tion time exhibits an initial increase with increasing K,
as the PN node moves from the leaf level to level 2. RC-
AR generates significantly smaller ASRs, but it is much
slower than both RC-GH and HC.

6.3 Variable Query Frequencies
As discussed in Section 5.2, local partitioning methods
that require loading the entire PN node (e.g., AR, TD)
are not I/O and CPU efficient, when the query frequen-
cy distribution is skewed. We support our claim with
an experiment which measures the I/O cost to retrieve
the PN node, and the number of points included in PN.
We generated 1000 queries, each assigned to a user ac-
cording to the zipf distribution with parameter 0.8.
Page size is 4 KB. The results are shown in Fig. 6.6. Due
to its unbalanced structure, QC incurs higher I/O cost
than RC, and it requires retrieving the entire dataset for
values of K > 600. Although RC incurs less I/O, for K >
800, PN corresponds to the root node of the index;
therefore, all points need to be retrieved. Consequently,
AR and TD are impractical for skewed frequency dis-
tribution.

Finally, we evaluate RC-FQGH, which is feasible for
skewed query distributions because it does not retrieve
the entire PN sub-tree. For comparison, we use a fre-
quency-aware variant of HC (called HCf), which is
similar to RC- FQGH, except that partitioning is ap-
plied to the entire user set, as opposed to the PN node.
We consider 1000 random queries with constant (Cst),
uniform (Unif) and zipf-0.8 distribution (Zipf). Fig. 6.7

(a) Area (b) Time

Fig. 6.3 RC: Partitioning methods versus page size

(a) Area (b) Time

Fig. 6.4 QC: Partitioning methods versus page size

(a) Area (b) Time

Fig. 6.5 RC-GH and RC-AR versus HC

13

shows that guaranteeing privacy for variable query
frequency comes at an additional increase in ASR size,
which grows with the skewness of the frequency distri-
bution. RC-FQGH is slightly better in terms of ASR
area, but the advantage of the reciprocal framework is
clear in terms of generation time, where RC-FQGH is
much faster than HCf for all query distributions.

7 CONCLUSIONS
In this paper we proposed a reciprocal framework that
allows the implementation of a variety of secure algo-
rithms for spatial K-anonymity on top of a spatial in-
dex. We also extended the framework to support users
with variable query frequencies. We demonstrated the
versatility of our framework by using it to implement a
variety of partitioning techniques on top of two popu-
lar spatial indices. Finally, we showed experimentally
that our methods outperform the only existing secure
technique.

In the future, we plan to address more attack scena-
rios, such as attacks based on user preferences. Assume
that each user is interested in certain types of queries,
e.g., traffic conditions, restaurants, etc. An attacker may
use the additional knowledge to infer the query source.
To prevent this, users can be classified into groups ac-
cording to their interests. Then, spatial diversity would
take into account these groups when forming ASRs; i.e.,
an ASR should contain users with similar interests, from
the same group. Another interesting problem concerns
continuous SKA [CM07]. In this setting, a client poses a
long running query about its surroundings (e.g., “find
the nearest gas station”), whose results are updated as

the client moves. The cloaking algorithm should gener-
ate a continuously changing ASR in a way that it does
not reveal information about the user through inspec-
tion of the individual ASR snapshots.

REFERENCES
[A84] Abel, D. J. A B+ tree structure for large quadtrees.

Computer Vision, Graphics, and Image Processing
27(1): 19-31, 1984.

[AFK+06] Aggarwal G., Feder T., Kenthapadi K., Khuller S.,
Panigrahy R., Thomas D., Zhu A.. Achieving Anonym-
ity via Clustering. PODS, 2006.

[B71] Butz A.R.. Alternative Algorithm for Hilbert's Space-Filling
Curve. IEEE Trans. on Computers, April ,1971.

[BA05] Bayardo R.J., Agrawal R. Data Privacy through Op-
timal k-Anonymization. ICDE, 2005.

[BKSS90] Beckmann N., Kriegel H.P., Schneider R., Seeger B.
The R*-Tree: An Efficient and Robust Access Method
for Points and Rectangles. SIGMOD, 1990.

[BS03] Beresford A.R., Stajano F. Location Privacy in Perva-
sive Computing. IEEE Pervasive Computing, 2(1):46-55,
2003.

[BWJ05] Bettini C., Wang S., Jagodia S. Protecting Privacy
Against Location-based Personal Identification. VLDB
Workshop on Secure Data Management, 2005.

[CZBP06] Cheng R., Zhang Y., Bertino E., Prabhakar S., Preserv-
ing User Location Privacy in Mobile Data Manage-
ment Infrastructures. Privacy Enhancing Technology
Workshop, 2006.

[CM07] Chow C.Y., Mokbel M. Enabling Private Continuous Que-
ries for Revealed User Locations. SSTD ,2007.

[CML06] Chow C., Mokbel M., Liu X. A Peer-to-Peer Spatial
Cloaking Algorithm for Anonymous Location-based
Services. ACM GIS, 2006.

[GL05] Gedik B., Liu L. Location Privacy in Mobile Systems: A
Personalized Anonymization Model. ICDCS, 2005.

[GKS07] Ghinita G., Kalnis P., Skiadopoulos S. PRIVÈ: Ano-
nymous Location-based Queries in Distributed Mobile
Systems. WWW, 2007.

[GKKM07] Ghinita G., Karras P., Kalnis P., Mamoulis N, Fast Data
Anonymization with Low Information Loss. VLDB,
2007.

[GG03] Gruteser M., Grunwald D. Anonymous Usage of Loca-
tion-Based Services Through Spatial and Temporal
Cloaking. USENIX MobiSys, 2003.

[HG05] Hoh B., Gruteser M. Protecting Location Privacy
through Path Confusion. SecureComm, 2005.

[HL05] Hu H., Lee D.L. Range Nearest-Neighbor Query. IEEE
TKDE, 18(1):78-91, 2006.

[IN07] Iwuchukwu, T., Jeffrey F. Naughton, J. K-Anonymization
as Spatial Indexing: Toward Scalable and Incremental Ano-
nymization. VLDB, 2007.

[KGMP07] Kalnis P., Ghinita G., Mouratidis K., Papadias D. Pre-
venting Location-Based Identity Inference in Ano-
nymous Spatial Queries. IEEE TKDE, to appear.

[KS07] Khoshgozaran A., Shahabi C. Blind Evaluation of Nearest
Neighbor Queries Using Space Transformation to Preserve
Location Privacy. SSTD ,2007.

[KZTO05] Kamat P., Zhang Y., Trappe W., Ozturk C. Enhancing
Source-Location Privacy in Sensor Network Routing.
ICDCS, 2005.

[LDR05] LeFevre K., DeWitt D.J., Ramakrishnan R. Incognito:
Efficient Full-domain K-Anonymity. SIGMOD, 2005.

(a) Number of I/Os (b) |PN|

Fig. 6.6 PN overhead for variable query frequency

(a) Area (b) Time

Fig. 6.7 RC-FQGH versus HCf

14

[LDR06] LeFevre K., DeWitt D.J., Ramakrishnan R. Mondrian
Multidimensional K-Anonymity. ICDE, 2006.

[MGKV06] Machanavajjhala A., Gehrke J., Kifer D., Venkitasu-
bramaniam M. l-Diversity: Privacy Beyond K-
Anonymity. ICDE, 2006.

[MCA06] Mokbel M.F, Chow C.Y, Aref W.G. The New Casper:
Query Processing for Location Services without Com-
promising Privacy. VLDB, 2006.

[S01] Samarati P. Protecting Respondents' Identities in Mi-
crodata Release. IEEE TKDE, 13(6):1010-1027, 2001.

[S90] Samet H. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, 1990.

[TP05] Tao Y., D. Papadias. Historical Spatio-Temporal Ag-
gregation. ACM TOIS, 23(1), 61-102, 2005.

[XWP+06] Xu J., Wang W., Pei J., Wang X., Shi B., Fu A., Utility-
Based Anonymization Using Local Recoding.
SIGKDD, 2006.

APPENDIX A
Among the systems reviewed in Section 2.2, Casper and
Interval Cloak perform spatial cloaking, using the same
architecture and following the same assumptions as our
techniques. Next, we show formally that both ap-
proaches are not secure. Recall that the shape of an ASR
in Casper can be either a square, or the horizon-
tal/vertical union of two adjacent cells under the same
parent. We first analyze the case of square ASRs assum-
ing that an attacker detects the ASR of Fig. A.1a. Then,
s/he can infer that it was created due to a query from a
user U in A, B, C, D. If U is in cell A, the required de-
gree of anonymity KA must be in the range [MA+1,
|A|+|B|+|C|+|D|]. MA =|A| + max{|B|, |C|} is
due to the fact that neither A∪B, nor A∪C contains suf-
ficient points (otherwise the ASR would be A∪B, or
A∪C). Similar to KA, we can calculate the ranges of KB,
KC and KD which have the same maximum value
|A|+|B|+|C|+|D|, but different lower bounds MB =
|B| + max{|A|,|D|}, MC = |C| + max{|A|,|D|} and
MD = |D| + max{|B|,|C|}, respectively.

Summarizing, the ASR is generated by a query ori-
ginating from (i) A with anonymity KA, i.e.,
|A|⋅(|A|+|B|+|C|+|D|-MA) events, or (ii) B with KB,
i.e., |B|⋅(|A|+|B|+|C|+|D|-MB) events, or (iii) C
with KC, i.e., |C|⋅(|A|+|B|+|C|+|D|-MC) events, or
(iv) D with KD, i.e., |D|⋅(|A|+|B|+|C|+|D|-MD)
events. The total number of events is
(|A|+|B|+|C|+|D|)2-|A|⋅MA-|B|⋅MB-|C|⋅MC-
|D|⋅MD. Given no additional knowledge about the
query frequency and the anonymity degree distribu-
tions, the attacker considers that these events have
equal probabilities, e.g., s/he assumes that the query
originates from A with probability:

()
()2

A
A

A B C D

A A B C D M
P

A B C D A M B M C M D M

⋅ + + + −
=

+ + + − ⋅ − ⋅ − ⋅ − ⋅

Within A, each individual user can issue the query
with equal probability PA/|A|. For SKA to be pre-

served, it must hold that PA/|A| ≤ 1/ KA. Since the
maximum value of KA is |A|+|B|+|C|+|D|, we have
PA/|A| ≤ 1/(|A|+|B|+|C|+|D|). Applying the
same reasoning to PB/|B|, PC/|C| and PD/|D| and
some algebraic simplifications, we derive the following
system of linear inequalities:

B C D
A

A C D
B

A B D
C

A B C
D

B M C M D M
M

B C D

A M C M D M
M

A C D

A M B M D M
M

A B D

A M B M C M
M

A B C

⎧ ⋅ + ⋅ + ⋅
≥⎪ + +⎪

⎪ ⋅ + ⋅ + ⋅
⎪ ≥

+ +⎪
⎨

⋅ + ⋅ + ⋅⎪ ≥⎪ + +
⎪
⎪ ⋅ + ⋅ + ⋅

≥⎪ + +⎩

The solution to the above system has the only form
MA = MB= MC = MD. MA=MD implies that |A|=|D|, and
MB=MC that |B|=|C|. In other words, each pair of di-
agonal cells should have the same cardinality; other-
wise Casper fails to preserve SKA. As an example con-
sider Fig. A.1a, where A, C and D contain one user
each, and B includes 10 users (MA=MB=MD=11, MC=2).
Assuming that the query originates from UC in cell C,
then KC must be in the range [3, 13]. The attacker will
infer UC as the origin with probability PC/|C|=11/35,
which exceeds 1/KC for 4 ≤ KC. Thus, the anonymity of
UC is breached for all, but one, queries involving this
ASR.

A B

C D

ASRUC

A B

C D

ASR

UA

(a) Square ASR (b) 2x1 Rectangular ASR
Fig. A.1 Examples of Casper ASRs

Having established that diagonal neighbors must
have the same cardinality (in order not to compromise
square ASRs), we will show that the horizontal and
vertical neighbors must also satisfy the same condition.
Assume a rectangular ASR consisting of cells A and B
(see Fig. A.1b). Clearly, the query may have originated
from a user U in A or B. If U is in A, the required degree
of anonymity KA must be in the range [|A|+1,
|A|+|B|]. This is because if KA ≤ |A|, the ASR would
not include B (as the points in A would suffice). Other-
wise, if KA > |A|+|B|, the ASR should be larger than
the union of A and B. Similarly, if the query is issued by
any user from B, the degree of anonymity KB is in the
range [|B|+1, |A|+|B|]. By applying the previous
methodology, we conlude that |A|, |B|, |C|, |D|
must all be equal to guarantee anonymity.

15

Therefore, Casper achieves SKA only when each cell
(at any level) contains exactly the same number of users
as its neighbors, i.e., only for perfectly uniform user distri-
bution. The analysis also applies to the simpler case of
Interval Cloak.

